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Abstract

The parameters of ecosystem models are conventionally

optimized through nonsequential inversion methods, which

treat observations as a whole and lack the flexibility to

investigate possible temporal evolution of the model

parameters. This research developed a smoothed ensemble

Kalman filter (SEnKF) to assess to what extent the

parameters and state variables of an ecosystem model can be

simultaneously optimized through the assimilation of eddy

flux observations. The performance of the SEnKF was

demonstrated in one case study: the assimilation of

measurements of carbon exchange between a mixed forest

and the atmosphere at Niwot Ridge Forest (Colorado, USA)

from 2000 to 2004 into a carbon flux partition model. Our

analyses demonstrated that some model parameters, such as

light use efficiency and respiration coefficients, were highly

constrained by eddy flux data at daily to seasonal time

scales. Light use efficiency was strongly seasonal. Model

predictions based on parameters modified by the SEnKF

were much improved, compared to predictions made

without progressive data assimilation. The SEnKF reduced

the variance of state variables that is caused by uncertainties

of parameters and driving variables. The analysis of net

ecosystem exchange of carbon between the forest and the

atmosphere was improved.

1. INTRODUCTION

The accuracy of our measurement and modelling of

ecosystem carbon dynamics is limited by many factors.

Measurements of carbon in the environment are often

patchy in space and discontinuous in time. The modelling of

carbon dynamics is built on principles that must be coupled

with assumptions and crafted with parameters that can only

be imperfectly defined. Advanced data assimilation

techniques based on statistics or optimization theory can

mitigate these limitations by combining a series of

measurements with dynamic models. To date, much of the

effort spent in developing data assimilation methods for

carbon dynamics analysis has focused on estimating optimal

values for either model parameters [e.g. Braswell et al.,

2005; Knorr and Kattge, 2005; Wang et al., 2006] or state

variables [Bond-Lamberty et al., 2005], but only rarely both

[Gove and Hollinger, 2006]. Methods that focus on

estimating parameter values alone (i.e., without considering

state variables) generally attempt to minimize long-term

prediction error by using a historical set of data that assumes

time-invariant parameters. The procedures used to process

the historical data as a whole lack the flexibility to

investigate the possibility that model parameters change

over time. Although there have been some attempts to

partition data into a number of subsets in time order, such

partitions are inevitably subjective [Reichstein et al.,

2005b]. The weakness of their approaches is that all errors

from input, output, and model structure are attributed solely

to model parameter uncertainties. Sequential data

assimilation procedures such as the ensemble Kalman filter

(EnKF) have the potential to overcome this drawback by

explicitly taking all sources of uncertainty into account

[Evensen, 2003; Nichol et al., 2002]. However, the

successful application of the EnKF focuses primarily on

estimating time-varying state variables under the typical

presumption that the parameters are to be specified in

advance. For example, Williams et al. (2005) successfully

used the EnKF to improve analysis of forest carbon

dynamics in a young ponderosa pine stand. Because the

ecosystems are too complex to guarantee the time-

invariance of the model parameters, we have developed a

novel sequential data assimilation procedure that will

provide simultaneous estimates of time-varying model states

and parameters.

A conventional method of model calibration is to

construct artificial parameter evolution at each time step by

adding small random perturbations [Todini et al., 1976]. The

drawback of such parameter sampling is the over-dispersion

of parameter samples. We now describe a smoothed

ensemble Kalman filter (SEnKF) to estimate simultaneously

system states and model parameters of forest carbon

dynamics. The aim of applying a kernel-smoothing

algorithm to an ensemble Kalman filter is to overcome the

dramatic, sudden change of parameter values in time and the

loss of continuity between two consecutive points in time.

This paper first describes the methodology of the SEnKF

and builds up the mathematical formulation. The SEnKF is



then used to assimilate AmeriFlux tower measurements into

a carbon flux partitioning model to estimate simultaneously

the model states and parameters. Finally, the simulation

results are displayed and analyzed.

2. METHODS

2.1. SEnKF

The SEnKF is a sequential data assimilation method with

three components: (1) a dynamic model used to forecast

system states as well as a parameter evolution process, (2)

observation data and the relationship between the data and

the model states, and (3) an assimilation scheme for model-

data synthesis [Evensen and Van Leeuwen, 2000; Evensen,

2003; Raupach et al., 2005].

2.1.1. Dynamic Model

A dynamic model can be expressed as one or more discrete-

time nonlinear stochastic processes:

Xk+l=f(Xk9Uk,0k) (1)

where k denotes the time step, X k is a vector of random

state variables or object variables (such as carbon flux or

storage attributes ), /is the model operator as a propagation

of model state (such as rates of change of net carbon fluxes),

U k is a set of externally specified time-dependent forcing

variables (such as meteorological variables and soil

properties), 6k is a set of model parameters or auxiliary

variables (such as light use efficiency and partition ratios),

and the noise term e k accounts for both imperfections in

model formulation and random variability in forcing

variables and parameters.

To extend the applicability of the EnKF to simultaneous

state-parameter estimation, we need to build an evolution of

the parameters similar to that of the state variables:

(2)

where g is a transition operator (such as a linear function,),

and r is a random error term. We will discuss their

definitions below. Now we define

Yk=(Xk,0k)T,M=(f,gf and*?* = (£k,Tk)T,
where T denotes transposition. Then (1) and (2) are changed

into a standard state model

Yk+1 = (3)

2.1.2. Observation Data

The observation (Z*) is related to the system state, external
forcing variables, and parameters through an expression of

the form

Zk =

Or

Zk =

(4)

(5)

where the operator H specifies the deterministic relationship

between the observation data and the model states. The

noise term Sk accounts for both measurement error

(instrument and processing errors in the measurements) and

representation error (errors in the model representation of Z,

introduced by shortcomings in the observation model H),

which is assumed to be Gaussian and independent of model

error.

2.1.3. Assimilation Scheme

The EnKF is based on the Monte Carlo method and the

Kalman filter formulation to mimic the probability

distribution of the model state, conditioned on a series of

observations of the model state. The probability density of

the model state is represented by a large ensemble of model

states, and these are integrated forward in time by the model

with a stochastic forcing term representing the model errors

[Evensen, 1994]. Each ensemble member evolves in time

according to:

(6)

Where N denotes the number of model state ensemble

members, Y;._+ is the component of the y'th ensemble

member forecast at time k+\ and Y-+ is the yth updated

ensemble member at time k. The noise term is not explicitly

represented because the EnKF represents multiplicative

model errors through forcing data perturbations [Evensen,

1997]. The forcing data perturbations are made by adding

white noise (subject to Gaussian distribution with zero mean

and covariance Q.) to forcing data at each time step:

N(0,Qk) (7)

Now we discuss how to build an evolution of the parameters

similar to that of the state variables. Conventional evolution

of artificial parameters, which adds a small random



perturbation at each time step, results in over-dispersion of

parameter samples and loss of continuity between two

consecutive points in time. We used the kernel smoothing of

parameter samples to remedy the problem, as described in

West [1993]

0 f +htkj

(8)

V+*=var(0j+), a2+h2=\

where a is the shrinkage factor in (0,1) of the kernel

location, which is typically around 0.45-0.49, h is the

smoothing or variance reduction parameter, 0 ■_ is the

component of the yth ensemble member forecast at time

Jfc+1, and 0k.+ is the component of theyth updated ensemble

member at time k.

Similarly, observation data are treated as random variables

by generating an ensemble of observations from a

distribution with the mean equal to the measurement value

and a covariance equal to the estimated measurement error

[Williams et al, 2005].

*+1 = zA+l (9)

Because the true state is generally unknown, we calculate a

forecasted ensemble covariance matrix to substitute for the

definitions of the error covariance matrix in the Standard

Kalman filter.

-My+1f (10)

Where M lY = [y,* - y,*,... , y^_ - yw*_ ] and

m~$ =i-YN y; ■

The updated scheme of the EnKF is as follows:

y = y__

where A^+i is Kalman gain

=P_k+lHT(HP_k+1HT+Rk+lyl

(11)

(12)

2.2. APPLICATION OF SENKF TO CARBON (C)

MODELLING

2.2.1. FLUX PARTITION MODEL

We use a flux partition model [Reichstein et al., 2005b] as

our test dynamic model for the SEnKF method. Our

selection is based on two considerations. First, it is a widely

used model for constructing bottom-up estimates of

continental carbon balance components. Second, it is

appropriate for testing the robustness of the SEnKF method

because it is nonlinear, there are sufficient observations of

state variables, and it has multiple unknown parameters. The

flux partition model divides net ecosystem exchange (NEE)

into gross primary production (GPP) and total ecosystem

respiration (RESP), in which function expressions of GPP

and RESP are introduced through mechanistic analysis and

many data regression analyses as follows:

NEE, = GPP,-RESP,

GPP, - WE, ■ PAR, ■ NDVI, ■ Dtemp ■ DVPD (13a~c)

RESP, = RrefJ exp[ £(1(—i-^-^-i-^)]

where subscript t denotes time-dependent, LUEt is light use

efficiency, PARt is photosynthetically active radiation,

NDV1{ is the normalized difference vegetation index, Rrefft is

respiration when air temperature (TairJ) equals reference

temperature (7^A usually specified as 10 °C), Eo is

temperature sensitivity, and To is a datum of temperature to

avoid a denominator of zero in the model (13c), kept

constant at -46.02 °C as in Reichstein et al., [2005a]. Dtemp

determines the effect of temperature on photosynthesis, and

DVPD expresses the decrease in leaf exchange from both

photosynthesis and transpiration caused by vapor pressure

deficit (VPD), according to

1
n =0.5 1 +

v() exp (v.VPD

(14)

(15)

where Tmim Topt9 and Tnmx denote minimum, optimal, and

maximum temperatures for photosynthesis, respectively,

VPD is vapor pressure deficit, and v0 and v} are two

unknown coefficients. If we define state and driving force

vectors as

Y, = (NEE,, GPP,, RESP,, WE„ 7min, Top,, Tmax, vt), vitRM,

and U,= (T,, PAR,,VPD,,NDVI,), then the model

can be expressed in the form of (6).



2.2.2. FLUX DATA

Eddy flux estimates of net ecosystem exchange (NEE) are

based on the covariance of high frequency fluctuations in

vertical wind velocity and CO2 concentration [Baldocchi et

al., 1988]. We applied the SEnKF approach to data obtained

at the AmeriFlux station at Niwot Ridge Forest (Colorado,

USA). The used period was from 2000 to 2004 because

there were sufficient hourly and daily data at the station for

that time, and because NDVI data from the Moderate

Resolution Imaging Spectroradiometer (MODIS) were not

available before 2000. Field observations included hourly

observations of NEE, humidity, photosynthetically active

radiation (PAR), air temperature, air pressure, wind speed,

and daily precipitation data. In our analysis, we used daily

data of three state variables (NEE, GPP, and RESP) and

four driving force variables (air temperature, PAR, VPD,

and NDVI). NEE data were directly downloaded from the

AmeriFlux Web station, in which NEE daily data were

actually a composite of half-hour observations. RESP data

were calculated from the temperature dependence curve of

ecosystem respiration derived from nighttime NEE

observations [Yuan et al., in press]. GPP data were pseudo-

observations calculated as a total of NEE and RESP (13a).

Gaps in carbon exchange and meteorological data were

filled using multivariate nonlinear regression. Daily NDVI

was calculated using linear interpolation of the MODIS 16-

day composites. We assumed that data errors were subject

to a Gaussian distribution with a zero mean and a variance

of 20% of the average data based on uncertainty analysis in

eddy covariance measurements [Hollinger and Richardson,

2005]. The transition operator (H) in (4) was taken as a 3 x

N linear matrix with elements of 1 at diagonal nodes and 0

at other nodes.

To test the predictive power of the SEnKF, we held 80

percent of the data for model validation. Data assimilation

was performed on only 20 percent of the observations.

3 RESULTS AND ANALYSIS

For 2000 to 2004, the total assimilated GPP, RESP, and

NEE were 4970 ±21.7, 4137 ±16.8, and 833 ±22.3 gC m"2,
respectively. These compared well with observed GPP,

RESP, and NEE of 5188 ±50.1, 4327 ±41.9, and 861 ±24.6

gC m~2, respectively. The estimate of NEE clearly indicates
that the system was acting as a C sink during this time

period. The maximum daily root mean square errors of the

ensemble means of GPP, RESP, and NEE were 0.28, 0.25,

and 0.24 gC m"2 day"1, respectively, which were small

compared with their respective maximum daily means. Data

assimilation effectively captured the temporal changes of

GPP, RESP, and NEE over the four years (Fig. 1).

Figure 1. Time series of GPP, RESP, and NEE simulated

by the SEnKF and assimilated data. The grey vertical lines

indicate the corresponding standard deviation around the

mean of ensembles.

We evaluated the performance of the SEnKF method,

comparing results from the SEnKF with those generated by

the conventional modelling approach. The conventional

modelling approach had the same flux partition model, but a

set of fixed optimal parameter values were obtained using

the conventional nonlinear inversion procedures in the

statistical analytical software package SAS (SAS, 1990).
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Figure 2. Comparison of estimates of GPP, RESP, and NEE

generated by the SEnKF and the base model against 20

percent of the assimilated data.

However, this set of parameter values was derived from a

mixture of 15 AmeriFlux stations, covering a variety of

ecosystem types [Yuan et al., in press]. As a result, these

parameter values were not necessarily optimal for the Niwot

Ridge station in this study. From Figures 2 and 3, we can

see that predictions from the conventional modelling

approach deviate from the observations at the Niwot Ridge

site, caused at least partially by the use of time-invariant

parameter values. In this paper, we refer to the conventional

modelling approach as the base model. No further

optimization of the parameter values was performed

specifically for Niwot Ridge Forest in order to see whether

or not the SEnKF could reduce the bias of the model

stemming from parameter uncertainty.
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Figure 3. Comparison of the forecasted values of three

state variables (GPP, RESP, and NEE) of the model

modified by the SEnKF and of the original base model

against unassimilated data (80 percent of total observations).



Figure 2 compares the results simulated by the SEnKF

data assimilation and by the base model. Only 20 percent of

the observations were used during data assimilation. The

assimilated fluxes were very similar to the observations as

indicated by the closeness of the points along the diagonal

line, whereas the flux estimates generated by the base model

contained systematic errors as indicated by the deviation of

triangles from the diagonal line. Data assimilation

accounted for more than 98 percent of the variation in the

observations of GPP, REPS, and NEE, whereas the base

model only explained 84, 82, and 10 percent of the variation

for GPP, RESP, and NEE, respectively. All the linear

regression equations between assimilated and observed

GPP, RESP, and NEE indicated no significant bias

(a<0.05), whereas the base model generated strong biases.

[47a

sdvof model gpp

0.2 0.4 0.6 0.8

sdvof model resp

0.2 0.4 0.6 0.8

sdvof model nee

Figure 4. Reduced ratio of ensemble variances of GPP,

RESP, and NEE generated by the SEnKF against that by the

base model alone. The results show the SEnKF can more

dramatically reduce variances of state variables than the

ensemble based only on Monte Carlo technique.

The next step was to test whether the new parameter values

derived from the SEnKF could be used to improve the

prediction of system conditions. Figure 3 compares the

model predictions (based on parameters derived from 20

percent of the observations using the SEnKF and by the

base model) with the observations that were held for

validation (i.e., the 80 percent of the observations that the

SEnKF did not see). Comparing three pairs of

corresponding linear fitting regression equations for GPP,

RESP, and NEE, and their corresponding coefficients of

determination (R2), we see that the estimates of the three
flux variables using the parameters (e.g., light use efficiency

and reference respiration) modified by the SEnKF had less

bias against observations than did the estimates using the

base model (Fig. 3). This indicates that the SEnKF can

extend the model parameter values generated from data

assimilation to predictions when observations are not

available. This capability could be valuable for filling data

gaps caused by instrument failure.

Predictions made by SEnKF with data assimilation

matched observations substantially better (Fig. 2) than

predictions made without data assimilation (Fig. 3). The

SEnKF procedure becomes regular Monte Carlo analysis at

the time steps when no observation data are available for

assimilation. At the data assimilation points (20 percent of

the data), observation data strongly constrained the three

flux variables (Fig. 2), and the differences between SEnKF

model simulations and observations increased when no data

were assimilated (Fig. 3). This might mean that prior states

of the model have a weak effect on subsequent states. It

might also suggest that there were other controlling factors

affecting these processes which were not included in the

model, or that uncertainty existed in observations. Figure 4

compares standard ensemble variances by SEnKF data

assimilation against those by Monte Carlo analysis without

data assimilation. The SEnKF can reduce up to 70 percent

of the variance of the ensemble without data assimilation.

As the magnitude of the variance of the ensemble

increases, the smoothing effect also increases. The variance

measures the uncertainty stemming from parameters and

driving forces.

Because the SEnKF can assimilate sequential

observation data into the model, the SEnKF also revealed

that the parameter values (e.g., light use efficiency and

reference respiration) possessed strong seasonality or

temporal variability (Fig. 5). This indicates that the base

model has structural errors (manifested by non-optimal

parameter values in this study) and results in bias in



prediction. The temporal change of parameter values was

relatively smooth because a smoothing procedure was

implemented in the SEnKF to control the over-dispersion of

parameter sampling. These demonstrate that the SEnKF can

be used to perform recursive model calibration to diagnose

the adequacy of model structure.

2001 2002 2003 2004

2000 2001 2002 2003 2004

Figure 5. Temporal variations of two key parameters in the

flux partition model: (a) light use efficiency (lue) and (b)

reference respiration (Rref). The grey vertical lines indicate

the standard deviation around the mean of ensembles.

4. CONCLUSIONS

The objective of this study is to assess to what extent the

parameters and state variables of an ecosystem model can be

simultaneously optimized through the assimilation of eddy

flux observations. Our analyses demonstrated that some

model parameters, such as light use efficiency and

respiration coefficients, were highly constrained by eddy

flux data at daily to seasonal time scales. Light use

efficiency was strongly seasonal. Model predictions based

on parameters modified by the SEnKF were much

improved, compared to predictions made without

progressive data assimilation. The SEnKF reduced the

variance of state variables that is caused by uncertainties of

parameters and driving variables. Simultaneous parameter

estimation can use near real-time observations to improve

the predictive ability of dynamic models. The model based

on the SEnKF can be used to fill data gaps in observations.

This research demonstrates that the SEnKF is a robust and

effective algorithm for evaluating and developing ecosystem

models, resulting in better quantification of model

parameters and improving our understanding of carbon

cycle processes.
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