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Objective
Track cheatgrass 
(Bromus tectorum) ( )
abundance and extents 
spatially and temporally 
(2000 t 2010) t id tif(2000 to 2010) to identify 
areas of increasing or 
decreasing cheatgrassdecreasing cheatgrass 
dominance. 

2001 NLCD



The Conundrum
Cheatgrass is an 
invasive non-native 
grass that greatly 
increases fire 
frequency severityfrequency, severity, 
and extent. However, 
cheatgrass die off g
can leave behind 
barren land and lead 
t il ito soil erosion.



Model Development
About 9,000 points were 
randomly generated and y g
used to train a 
regression-tree model. 
We gathered points fromWe gathered points from 
overlap areas between 
our study area and y
Peterson’s 2004 
cheatgrass map and 2007 

l i dannual grass index map 
in the Owyhee Uplands.



eMODIS NDVI Profiles
Early spring 
phenology of p gy
cheatgrass 
produces a 
spectral profilespectral profile 
distinguishable 
from other 
vegetation 
types.  

Two pixels in close proximity showTwo pixels in close proximity show 
distinctly different profiles during early 
spring.  



Time periods & index
Spring

We selected cheatgrass growing 
season period for spring and a period 
for cheatgrass senesce. We created

Spring 
period
image

for cheatgrass senesce. We created 
an index to contrast spring and 
summer spectral differences. 
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Cheatgrass model

Evaluation on training data (8933 cases):

Average  |error|                2.7

Model details

11–year 250–m 

eMODIS NDVI

Satellite observations Biophysical and 
geophysical data 

•Spring GSN period

Relative |error|               0.37
Correlation coefficient        0.87
R2 0.76

Attribute usage:
Conds Model

NDVI data temporal  smoothing 

eMODIS NDVI •Summer period
•Cheatgrass index
•Compound Topographic Index
•Elevation
•Slope
•Aspect
•SSURGO Data
MLRA

Conds  Model

83%    74%    spring
80%    83%    dem
79%    54%    index
61%    66%    summer
46%           mlra

Spring growing season 
integrated NDVI

Summer period
integrated NDVI

•MLRA
•LANDFIRE site potential
•Peterson’s cheatgrass data

Rule-based piecewise 
regression models

38%    63%    cti
24%    30%    awc
20%           LF
5%    19%    nslp
3%    11%    sslp

E l ti t t d t (1011 )
Cheatgrass index

regression models

Cheatgrass model 

Evaluation on test data (1011 cases):

Average  |error|                2.8
Relative |error|               0.38
Correlation coefficient        0.85
R2 0.72



Cheatgrass maps
Maps have been 
developed for 2000 p
to 2010 using the 
cheatgrass model, 
geophysical datageophysical data, 
and Peterson’s 
cheatgrass data. g



Comparing pre die-off with die-off areas



Difference Maps  



Future plans
• Model ecosystem performance anomalies by 

separating weather influences from p g
influences of management activities and 
disturbances

• Estimate future cheatgrass productivity 
using future climate projectionsg p j

• Estimate future cheatgrass extents using 
f t li t j tifuture climate projections



D i d
Ecosystem performance anomalies
We separate an 
ecosystems’ 
response to

Data inputs, processes, and outputs

Biophysical and 
geophysical data 

PRISM 
weather data

Satellite observations
response to 
weather from its 
response to 
management 
acti ities

•Compound Topographic Index
•Elevation
•Slope
•Aspect
•SSURGO Data

Precipitation for:
•Winter
•Early Spring
•Spring

11–year 250–m 

eMODIS NDVI 

activities 
and disturbances. 
We identify areas 
of under and 

SSURGO Data
•MLRA
•LANDFIRE site potential
•Long-term average precipitation
•Long-term average temperature
•Long-term average GSN 

•Summer
Minimum and 
maximum temperature 
for:
•Winter
•Early Spring
•Spring

Growing season integrated 
NDVI

NDVI data temporal  
smoothing 

overperformance 
by comparing 
expected 
ecosystem

•Spring
•SummerRule-based piecewise 

regression models

Long-term site potential 

Actual EP 

ecosystem 
performance with 
actual ecosystem 
performance.

Rule-based piecewise 
regression models

EPAExpected EP EPA map



Performance anomaly time series



Fire disturbance reflected 

2007 2008

in performance anomaly

Significant S g ca t
performance 
changes



Past, present, and future land cover 
productivity and extents
We input historical Data inputs, processes, and outputs
and modern weather 
data and future 
climate data into our 
model to track big 

P i it ti f

PRISM 
weather data 

Satellite 
observations

9–year 250–m •Compound Topographic Index

Biophysical and 
geophysical data 

NCAR future
climate data

sagebrush 
productivity and 
extents through 
time. Understanding 

Precipitation for:
•Winter
•Spring
•Early summer 
•Summer

Minimum and 

NDVI data temporal  
smoothing 

y
MODIS NDVI 

p p g p
•Elevation
•Slope
•Aspect
•SSURGO Data
•MLRA
•LANDFIRE site potential
•Long-term average precipitation

where big 
sagebrush is 
projected to be most 
productive and 

maximum 
temperature for:
•Winter
•Spring
•Early summer 
•Summer

Growing season integrated 
NDVI

Actual EP 

g g p p
•Long-term Average temperature
•Long-term Average GSN

Rule-based piecewise 
regression models

contract or expand 
can help inform 
management plans.   

Rule-based piecewise 
regression models

Long-term site potential 

Expected EP a Expected future EP 



A time-series of big sagebrush 
productivity
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Estimating future big sagebrush extents

Geophysical and

Climate data  

•Compound Topographic Index
•Elevation
•Slope
•Aspect
L i i i

•Compound Topographic Index
•Elevation
•Slope
•Aspect

•Long-term average precipitation
•Long-term Average temperature
•Long-term Average GSN

Decision-tree model

•Future climate precipitation
•Future climate temperature
•Long-term Average GSN

Land cover extents Future land cover extents

Stable and 
changing 

Future big 
sagebrushsagebrush



Summary/Acknowledgements
The presence and abundance of cheatgrass varies spatially over time, and 
we can capture the variances using remote sensing technologies.

Ecosystem performance anomaly modeling separates weather effects from 
effects of disturbance and management activities.

Future land cover extents and productivity can be estimated using future 
climate projections as inputs into regression-tree software.

We seek to integrate our work with others, and we hope to expand the study 
area to include more of the northern Great Basin region.
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