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1 Introduction16

Savannas are globally important ecosystems vital to human economies (Sankaran17
et al. 2005). They cover one-fifth of the earth’s land surface and support a large18
proportion of the world’s population and most of the livestock and wild herbivore19
biomass (Scholes and Archer 1997). Savannas in Africa are usually characterized by20
the co-dominance of trees and grasses. Over time, many of these ecosystems have21
been converted to croplands. Both natural savanna and savanna-derived cropland22
have become sensitive to land surface disturbances (such as mining and agricultural23
expansion from natural savanna, and intensification of cropping and management24
practices) and are among the world’s regions most vulnerable to climate change25
(Sala et al. 2000; Bond et al. 2003; Weltzin and McPherson 2003). Deterioration of26
soil fertility and decrease in crop yields on this kind of cropland due to population27
pressure-induced cropping intensification is threatening food security and human28
livelihoods (Sankaran et al. 2005). For example, the annual population growth29
rate from 2000 to 2008 in Ghana was about 2.81% (http://www.statsghana.gov.gh/),30
while the annual food increase rate was only about 1.26% (http://faostat.fao.org/).31
In our study area presented here, Bawku district, the population density (capital32
per square kilometer) increased from 111 in 1970 and 160 in 1984 to 300 in 200033
(http://www.statsghana.gov.gh/).34

The availability of water and nutrients and the regime of land disturbances are35
generally thought to be critical in regulating savanna ecosystem performance. For36
natural savannas, water availability determines the coexistence of woody cover and37
grass (Sankaran et al. 2005). Most African savannas receive an annual precipitation38
of about 650 ± 134 mm, and if the annual precipitation is greater than the upper limit39
650 + 134 mm, there is sufficient water available for natural savanna systems to build40
up woody canopy (Sankaran et al. 2005). However, many natural savannas in sub-41
Saharan Africa have been cultivated for food production and most natural trees and42
grass have been replaced with crops. We need to understand the responses of such43
managed ecosystems to changes in climate and crop management so that adaptive44
management policies can be established to ensure sustainability of the savanna-45
derived croplands under varying climates.46

Ghana is a very diverse country physically and culturally and usually characterized47
by its unique ecological regions, or ecoregions (Allotey and Tachie-Obeng 2006).48
There are remarkable gradients of climatic variables. With a decrease in precipitation49
and increase in temperature from the south to the north across Ghana territory,50
accordingly, ecoregions have been characterized with the moist forest-dominated51
ecosystem in the south to those with savanna in the north, and the transitional zone52
is in central Ghana.53

In response to climate change, the changes in the distribution and dominance54
of different species and constraints from soil nutrient availability (Hungate et al.55
2003; Luo et al. 2006; Reich et al. 2006b) could make the savanna-derived cropping56
ecosystem different from natural savannas. Particularly, the soil nitrogen (N) deple-57
tion from croplands in sub-Saharan Africa has been documented ranging from 11 to58
22 kg N ha−1 year−1 (and 1.3–2.5 kg K ha−1 year−1 and 7.5–15 kg P ha−1 year−1) since59
the 1950s (Lal 2007). The average N fertilizer application rate for crops across Ghana60
from 1970 to 2000 was about 4 kg N ha−1 year−1 (EarthTrends 2003). The continuing61
nutrient depletion has been perpetuated with an attendant decline in soil productivity62

http://www.statsghana.gov.gh/
http://faostat.fao.org/
http://www.statsghana.gov.gh/
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(Lal 2007). If limitations to land productivity resulting from the insufficient supply 63
of N nutrient are widespread in both natural and managed ecosystems, soil N supply 64
likely becomes a critical constraint on global terrestrial responses to climate warming 65
(Oren et al. 2001; Hungate et al. 2003; Luo et al. 2006; Reich et al. 2006a, b). In this 66
study, the land use change data, historical climate records, and soil inventory are used 67
to drive a biogeochemical model for simulating the dynamics of ecosystem C budgets 68
in the Bawku savanna zone of Ghana during the twentieth century, and then from the 69
baselines we evaluate the sensitivity of soil organic C (SOC) stocks and crop yields 70
to the projected progressive warming–drying and N fertilization scenarios over the 71
twenty-first century. 72

2 Materials and methods 73

2.1 Study area 74

The Bawku savanna zone is in the northeastern corner of Ghana, West Africa, 75
and covers an area of 2,130 km2. We assumed the whole area in 1900 was covered 76
with the open forest. According to remotely sensed imagery in 2000, most of the 77
open forest was deforested to become the savanna, one of eastern Sudan savanna 78
ecosystems as defined by Allotey and Tachie-Obeng (2006). As a result, the open 79
forest was only 0.4%, grass/herb lands accounted for 16.7%, while the croplands (or 80
cultivated savanna) amounted up to 79%. The mean annual minimum and maximum 81
temperatures between 1971 and 2000 across the study area were 22.6 ± 0.4◦C and 82
31.9 ± 1.6◦C, respectively. The mean annual precipitation was 1,008 ± 143 mm, 83
about 90% of which was in the period from April through October. According to the 84
field observations, major crop species are groundnut (Arachis hypogaea), sorghum 85
(Sorghum bicolor S.), millet (Pennisetum glaucum P.), rice (Oryza glaberrima), and 86
maize (Zea mays L.). Unpublished local government’s statistics showed that these 87
cropping systems accounted for 29%, 36%, 20%, 13%, and 2% of all the planted 88
area in 2000, respectively. 89

2.2 Modeling system and simulations 90

GEMS (refer to Liu et al. 2004 for details), a biogeochemical modeling system, was 91
used in this study to simulate C and N dynamics within each ecosystem. GEMS has 92
the capability of modeling the impacts of land surface disturbances and management 93
practices, including land use and land cover change, fertilization, cultivation, and 94
natural disturbances (Liu et al. 2004). In order to reduce the potential biases resulted 95
from the direct injection of information contained in spatial databases that are 96
aggregated to map unit level from inputs (Reiners et al. 2002), GEMS uses data Q297
assimilation mechanisms to incorporate field scale spatial heterogeneities of state 98
and driving variables into simulations in two steps: searching and retrieving relevant 99
information from various databases according to the keys provided by a joint fre- 100
quency distribution (JFD) table, and then downscaling the aggregated information at 101
the map unit level to the field scale using a Monte Carlo approach. Once all input data 102
are assimilated, they are incorporated into the modeling processes by means of the 103
input/output processor (IOP) and updated with assimilated data. Values of selected 104



AUTHOR'S PROOF

UNCORRECTED
PROOF

JrnlID 10584_ArtID 9688_Proof# 1 - 18/08/09

Climatic Change

output variables are written by the IOP to a set of output files after each model105
execution. The geospatial GIS layers and other attribute data used in modeling are106
briefly summarized in Section 2.3.107

The architecture of GEMS in this study was designed for three scenarios: initial108
C status around 1900 when all land was assumed to cover with open forest (Allotey109
and Tachie-Obeng 2006), impacts of human disturbances on C dynamics from 1900110
to 2000, and C trends under a changing climate from 2000 to 2100. For initial C111
status, ecosystem C fluxes and SOC stocks in 1900 were assumed to be in equilibrium112
and quantified by running GEMS for 1,500 years under natural vegetation. The field113
observation data of SOC stocks and crop yields of 20 sampling sites across the study114
area were used for model parameterization and validation of model outputs. The115
results for 2000 were set as the baselines for simulating SOC dynamics and crop yield116
variations for the twenty-first century under the climate change and N fertilization117
scenarios described below.118

2.3 Input data for model simulations119

The geospatial datasets used in GEMS include LULC images for 1972, 1986,120
and 2000 provided by Ghana Environmental Protection Agency and Center for121
Remote Sensing and Geographical Information System, soil inventory taken from122
the FAO soil database, and historical climate records from 1971 to 2000 (including123
mean monthly precipitation, mean monthly minimum- and maximum temperatures).124
Overlaying these geographic information system (GIS) layers generates a combined125
GIS coverage (i.e. JFD layer) and a JFD table. The JFD layer defines the spatial126
association or covariance of these variables and represents the spatial heterogeneities127
of biophysical variables across the study area (Liu 2009). Each JFD case (i.e. a grid)Q2 128
will be the spatial simulation unit of GEMS. A JFD table lists all of the realized129
unique combinations of the values of the variables and their associated frequencies130
(or areas), thereby providing the spatial framework to visualize and analyze simula-131
tion results, such as the spatial and temporal patterns of biogeochemical properties132
(Liu 2009).Q2 133

The information about land use and land cover, climate variables, and carbon134
stocks in vegetation and soils as of 2000 were used as the baselines for simulations135
for the twenty-first century.136

The dataset of management practices for model simulations consisted of crop137
composition, crop rotation, fallow, and harvesting options (or residue management).138
These kinds of information and their parameters used in GEMS are listed in Tables 1,139

t1.1 Table 1 Percentage of each crop in all planted area (crop composition) across Bawku districtQ3
t1.2 Period Open cultivated savannaa Widely open cultivate savannab

t1.3 Maize Sorghum Millet Rice Groundnut Maize Sorghum Millet Rice Groundnut

t1.4 1900–1975 1 13 13 1 22 1 17 8 5 19
t1.5 1976–1982 1 14 12 1 22 1 17 9 4 19
t1.6 1983–1986 1 15 10 3 21 1 16 8 5 20
t1.7 1987–1994 1 15 9 5 20 1 16 9 4 20
t1.8 1994–2000 1 15 9 6 19 1 15 9 6 19

t1.9 aWith ten to 20 trees per hectare
bWith less than ten trees per hectare
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Table 2 Probabilities of crop Q3
rotation

t2.1Maize Sorghum Millet Rice Groundnut

t2.2Maize 0.45 0.15 0.20 0.00 0.20
t2.3Sorghum 0.15 0.40 0.25 0.00 0.20
t2.4Millet 0.20 0.20 0.35 0.00 0.25
t2.5Rice 0.00 0.00 0.00 1.00 0.00
t2.6Groundnut 0.20 0.25 0.20 0.00 0.35

2, 3 and 4. An average level of 2 Mg ha−1 year−1 manure as suggested by field 140
investigation was assumed to add to all croplands for modeling. The traditional 141
plowing methods (hand- and animal-driven plowing) were applied to define tillage 142
parameter but no differences between both were defined for model simulation in 143
this study. The frequency of fuelwood production from woodlands was assumed to be 144
one time each year with a removal of 25% aboveground biomass. Such management 145
information was retrieved by GEMS based on the JFD table and other “instruction” 146
files prepared for this study. All information of management practices addressed 147
above was synthesized from sample site investigations in 2006 and literature. 148

Soil organic C accumulation is closely related to the amount of biomass production 149
which varies with land use type and individual crop species. While, the amount 150
of biomass contributed to SOC budget also depend up the crop composition, crop 151
rotation, fallow schedule, and harvesting methods. For example, more trees grown in 152
cropland will have more annual biomass and therefore will make more contribution 153
to SOC budget. GEMS is facilitated with special algorithms to simulate the impacts 154
of each management practice on SOC budget. 155

2.4 Climate change scenarios 156

The climate change scenarios in the twenty-first century were assumed as follows: 157

(1) No Climate Change (NCC): the average values of precipitation and minimum 158
and maximum temperatures from 1971 to 2000 are assumed to remain the same 159
for the twenty-first century. 160

(2) Low Climate Change (LCC): the precipitation during the growing season 161
(from April through October) will decrease by 105 mm by 2100, and the 162
annual minimum and maximum temperatures will increase by 3.1◦C and 2.6◦C, 163
respectively. 164

(3) High Climate Change (HCC): similar to LCC, the annual precipitation will 165
decrease by 240 mm by 2100, and the minimum and maximum temperature 166
will increase by 4.7◦C and 3.8◦C, respectively. 167

The approach of Hulme et al. (2001) and the climate records between the 1971 168
and 2000 from Ghana EPA (2000) were used to formulate the scenarios above. 169

t3.1Table 3 Fallow schedule Q3
t3.2Land use type Years in fallow Years in cropping

t3.3Minimum Maximum Minimum Maximum

t3.4Open cultivated savanna 1 2 5 10
t3.5Widely open cultivated savanna 1 3 4 8
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t4.1 Table 4 Percentage of harvested area associated with harvesting optionsQ3
t4.2 Period GH G50 G

t4.3 1900–1930 0.5 0.3 0.2
t4.4 1931–1960 0.3 0.5 0.2
t4.5 1961–1990 0.0 0.2 0.8
t4.6 1991–2000 0.0 0.0 1.0

t4.7 HG harvesting all grain and stalk, G50 harvesting grain and 50% of stalk, G harvesting grain only

Because Hulme’s approach was developed for Africa and complied with the IPCC170
SRES emissions scenarios, we assumed that the simulation results under the climate171
change scenarios formulated by this approach should be comparable to those esti-172
mated from the approaches recommended in the IPCC Fourth Assessment Report173
(http://www.ipcc.ch/ipccreports/ar4-syr.htm).174

2.5 Nitrogen (N) fertilization rates for the twenty-first century175

The average N fertilizer application rate across the country from 1971 to 2000176
was only about 4 kg N ha−1 year−1 (http://earthtrends.wri.org/). Crop Services177
Department of Ministry of Food and Agriculture of Ghana recommended an an-178
nual total fertilization rate of about 60 kg N ha−1 year−1 for maize production,179
consisting of 120 kg ha−1 of compound fertilizer (N, P, and K at 15–15–15% ratio)180
and 240 kg ha−1 of ammonium sulfate ((NH4)2SO4, containing about 20% N) for181
(Communication with Tachie-Obeng, Ghana EPA). Liu et al. (2004) documented182
the average N fertilization rate of 30 kg N ha−1 year−1 applied on all croplands in183
south-central Senegal. Therefore, we set three N fertilization scenarios for all crops184
through the twenty-first century as follows:185

(1) N4: the average N application rate of 4 kg N ha−1 year−1 from 1970 to 2000186
(EarthTrends 2003) is assumed to apply on all cropland until 2100.187

(2) N30: the N application rate will be increased to 30 kg N ha−1 year−1 after 2000.188
(3) N60: the N application rate will be increased to 60 kg N ha−1 year−1 after 2000.189

3 Results and discussion190

In order to assess the impacts of future climate change on ecosystem C dynamics191
during the twenty-first century, we first set up the C baselines (as of 2000) by running192
GEMS with historical climate records and an average N fertilization rate from 1971193
to 2000. Our simulation results show that, accompanying a substantial reduction in194
ecosystem C stock (here, the ecosystem C stock is defined as the sum of live and195
dead above- and below-ground biomass C, and SOC in the top 20 cm soil layer) from196
131 Mg C ha−1 in 1900 to 36 Mg C ha−1 in 2000, the SOC stock declined from 33.4 to197
19.4 Mg C ha−1 in all croplands. From these baselines, we simulated the responses of198
SOC stocks and crop yields to the climate change scenarios through the twenty-first199
century with an assumption of no change in land use and management.200

http://www.ipcc.ch/ipccreports/ar4-syr.htm
http://earthtrends.wri.org/
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t5.1Table 5 Consequences of climate change to soil carbon stocks in Bawku district Q3
t5.2Land use and 2000 NCC LCC HCC

t5.3land cover Area SOC 2100 Change 2100 Change 2100 Change
t5.4%a Mg C ha−1 Mg C ha−1 % Mg C ha−1 % Mg C ha−1 %

t5.5Open forest 0.4 28.3 23.9 −16 22.6 −20 22.0 −22
t5.6Open savanna 2.3 22.9 20.3 −11 19.0 −17 18.4 −20
t5.7Riverine 1.5 30.5 28.7 −6 27.2 −11 26.4 −13
t5.8Grass/herb 16.7 18.3 15.0 −18 13.9 −24 13.4 −27
t5.9Croplandb 79.0 19.4 21.1 9 19.8 2 19.4 0

t5.10Settlements 0.3
t5.11Average 19.9 20.1 1 18.9 −5 18.5 −7

t5.12NCC no climate change, LCC low climate change, HCC high climate change
aPercentage of the total land area
bWith an existing nitrogen fertilization rate (4 kg N ha−1 year−1)

3.1 Trends of SOC dynamics in response to climate change and N fertilization 201

The data presented in Table 5 indicate that, by 2100, there will be a SOC sink of 1.70 202
and 0.36 Mg C ha−1 under the no climate change (NCC) and the low climate change 203
(LCC), respectively, and little change will take place under the high climate change 204
(HCC). On the other hand, a substantial reduction in SOC stock (about 20%) will 205
occur in all savannas (Table 5). Such difference can be attributed to the changes in 206
the dominance of different species and life forms between the natural and managed 207
ecosystems (Field et al. 2007) and differences in management practices. Clearly, 208
open savanna ecosystems are naturally dominated by trees and grass and vulnerable 209
to the progressive warming–drying stress which could enhance soil respiration by 210
about 20% (Rustad et al. 2001). However, agricultural lands are grown with various 211
crops (see Table 6) and managed with measures such as fertilization, weed control, 212
irrigation, etc. to mitigate the impacts of the progressive climate stress on biomass 213
production, and in turn the increased above- and below-ground biomass production 214
can compensate some SOC loss caused by warming–drying-enhanced decomposition 215

t6.1Table 6 Average crop yields over the twenty-first century associated with N fertilization and climate Q3
change scenarios

t6.2Crop Areaa Baseb N_N4 N_N30 N_N60 L_N4 L_N30 L_N60 H_N4 H_N30 H_N60

t6.3% Mg ha−1 year−1

t6.4Maize 2.3 1.13 1.25 1.28 1.28 1.14 1.16 1.16 1.07 1.08 1.09
t6.5Sorghum 36.0 0.92 1.07 1.21 1.24 0.97 1.06 1.07 0.90 0.97 0.99
t6.6Millet 20.0 0.82 0.98 1.19 1.23 0.92 1.04 1.07 0.85 0.96 0.99
t6.7Rice 12.5 2.50 2.71 3.75 4.05 2.85 3.57 3.80 2.87 3.47 3.62
t6.8Groundnut 29.1 1.01 1.07 1.06 1.07 0.71 0.71 0.71 0.60 0.61 0.60
t6.9Meanc 1.13 1.26 1.48 1.54 1.12 1.27 1.31 1.05 1.18 1.21

t6.10Change % 11.8 31.3 36.6 −0.7 12.5 16.0 −6.5 4.4 7.1

t6.11N no climate change scenarios, L low climate change scenarios, H high climate change scenarios, N4
nitrogen fertilizer levels of 4 kg N ha−1 year−1, N30 nitrogen fertilizer levels of 30 kg N ha−1 year−1,
N60 nitrogen fertilizer levels of 60 kg N ha−1 year−1

aPercentage of all planted area
bGrain yield of dry biomass averaged from 1972 to 2000
cArea–weight average
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of soil organic matter. That may be the major reason why open savanna ecosystems216
are more sensitive to climate change and show a trend of SOC loss over time under217
warming–drying conditions.218

It can be seen from the table appended to Fig. 1 that increasing N fertilization rate219
will significantly enhance SOC accumulation, especially under NCC. The fertilization220
rates of N4, N30, and N60 will lead to an increase in SOC stock by 9.4%, 18.3%, and221
21.6% by the year 2100, respectively. Meanwhile, the soil organic nitrogen (SON)222
budgets show a stronger positive response to N fertilization than do SOC budgets223
(see Fig. 1b).224

Prior to 2000, the SOC dynamics were principally caused by cultivation-induced225
C emissions from soil. As illustrated in Fig. 1a, an increase in N fertilization will226
enhance SOC sequestration, depending on the warming–drying stress. The positive227
effects of N fertilization on SOC accumulation will be eventually offset by C228
emissions that are induced by warming–drying stress. Figure 1 also suggests that the229
SOC budget in croplands will be determined by the N fertilization rate for the first230
40 years and then will be dominated by climate variables. If no climate change (or231
NCC), there are very little changes in SOC stock after about the 40-year point for232
both N30 and N60 fertilization scenarios, which could be interpreted as the SOC233
reaching a new equilibrium after 40 years. While, the SOC stocks will decline with234
increased progressive warming–drying stress over time, especially under HCC, which235
implies that SOC accumulation rate with N fertilization will become weaker after236
about 40 years so as to be unable to offset the increased SOC emissions under the237
projected climate change scenarios. A similar trend will happen to SON (see Fig. 1b).238

SOC SON

NCC_N4 9.4 14.3
NCC_N30 18.3 27.2
NCC_N60 21.6 31.8
LCC_N4 2.6 9.3
LCC_N30 6.2 16.0
LCC_N60 8.1 18.6
HCC_N4 0.6 8.5
HCC_N30 2.9 12.3
HCC_N60 2.7 12.5

Combined
Scenario

Change %
2000-2100a  SOC

17

19

21

23

25

NCC_N4 NCC_N30 NCC_N60
LCC_N4 LCC_N30 LCC_N60

HCC_N4 HCC_N30 HCC_N60

b  SON

2.0

2.2

2.4

2.6

2.8

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Year

Fig. 1 Simulated responses of soil organic carbon (SOC) and soil organic nitrogen (SON) stocks
in all cropping systems to N fertilization levels under climate change scenarios for the twenty-
first century (NCC, LCC, and HCC, no climate change, low and high climate change scenarios,
respectively; N4, N30, and N60, fertilization level of 4, 30, and 60 kg N ha−1 year−1, respectively)
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Note that even with business-as-usual fertilization level (N4), the SOC and SON 239
stocks still show an increasing trend over time under all climate change scenarios 240
(Fig. 1). There are probably two reasons: (1) N deposition, and (2) crop rotations 241
except rice as shown in Table 2. It was assumed that there will be precipitation- 242
dependent N deposition at an average rate of about 1.3 kg N ha−1 year−1 (if 243
annual precipitation is 1,000 mm) which was set for model simulations. Meanwhile, 244
groundnut is a kind of N-fixation crop and can increase soil N content, and any 245
rotation of other cropping systems with groundnut planted area will increase soil N 246
availability to next crop growth. Besides N fertilization, both external N sources will 247
enhance SOC sequestration and SON accumulation, especially under a combination 248
of NCC and N4 scenarios. 249

3.2 Responses of crop yields to changes in climate and N fertilization 250

Compared with the average from 1972 to 2000 (Table 6), grain yield averaged 251
through the twenty-first century will increase by 11.8% with the existing fertilization 252
rate (4 kg N ha−1 year−1, or N4) under NCC, but decrease by 0.7% and 6.5% under 253
LCC and HCC, respectively. Such adverse impacts can be significantly mitigated by 254
increasing the N fertilization rate, especially under LCC. For example, to raise the N 255
fertilization rate from 4 to 30 kg N ha−1 year−1 under LCC will lead to a grain yield 256
increase of 90 kg ha−1 for sorghum, 120 kg ha−1 for millet, 720 kg ha−1 for rice, but 257
little change for maize and a decline over time for groundnut. The sensitivity of crop 258
grain yields to N fertilizers also depends on the extent of warming–drying stress as 259
illustrated in Fig. 2. An increment in the N fertilization rate from 4 kg N ha−1 year−1 260
to either 30 or 60 kg N ha−1 year−1 will significantly increase grain yields of all crops 261
(except groundnut) until about 2040, then the efficiency of N fertilizer will decline, 262
especially under HCC. The declining efficiency of N fertilizers over time may be also 263
related to deficiencies of other nutrients such as phosphorus (Buresh et al. 1997) and 264
potassium (Alber et al. 1997). 265

Interestingly, Fig. 2 demonstrates an increase in crop yields over time with N4 266
fertilization level. As addressed in the previous section, the N addition to soils 267
from atmospheric deposition and N-fixation by crops such as groundnut and in 268
paddy field (Shrestha and Maskey 2005) is supposed to be an important extra N 269
fertilizer source in our modeling. This input, even small, will be particularly helpful 270
to maintain and increase crop yields when N fertilizers’ supply is limited or lack in 271
the study area. Normally, both soil N availability and crop yield can mutually benefit. 272
Because differences in demand of crop species for N nutrient, each crop will respond 273
differently to the same level of N supply. For instance, groundnut does not require 274
external N supply because of its N-fixation ability (Murata et al. 2002); reversely, 275
external N application will inhibit the N-fixation and therefore lead to a reduction in 276
yield (see Fig. 2d). 277

3.3 Variations of SOC stock and crop yields as related to climate stresses 278

The statistics presented in Table 7 indicate that the impacts of climate variables on 279
SOC budgets vary with the nature of ecosystem and on crop yields vary with crop 280
species. For the natural ecosystems (including open forest, savanna, and grass/herb in 281
this study), any reduction in annual precipitation within the projected change regimes 282
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NCC, LCC and HCC, no, low, and high climate change; 
scenarios, respectively; 
N4, N30, and N60, fertilization level of 4, 30, and 
60 kg N ha-1yr-1, respectively.

e  Rice
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Year

a  Maize
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Fig. 2 Simulated responses of crop yields (in dry biomass) to nitrogen fertilization rates under
climate change scenarios by 2100 in Bawku district (b–e have the same legend as a)

will significantly limit SOC accumulation despite the favorable effects of warming283
under LCC. For managed cropland, however, SOC stocks in all croplands are284
significantly negatively related to temperature and annual precipitation, particularly285
under HCC. In other words, warming will significantly enhance SOC emissions which286
could be weakened by the reduction in annual precipitation within the projected287
change regimes. This may imply that existing annual precipitation is enough for288
crop production requirement and some less annual precipitation may be favorable to289
optimize biomass production of these crops because they are usually suitable to grow290
well in semiarid areas. It is just the interaction of both warming and drying on SOC291
budgets that results in little change in SOC stock in all croplands over the twenty-first292
century under LCC and HCC (see Table 5). Generally, SOC stocks of all croplands293
will significantly depend on the changes in the precipitation during the growing294
season, in temperature, or in both, assuming no changes in land use and management295
will take place. An increase in temperature will accelerate SOC emissions from all296
croplands under both LCC and HCC even though the rate of SOC emissions could297
be significantly reduced under less precipitation within the projected climate change298
regimes. These climate variables explain 86% of the variance of SOC under HCC299
and 66% under LCC for croplands, while they constraint greater than 90% of the300
SOC estimate variance for all natural ecosystems, implying that some other factors301
should be also considered together to determine their partial contributions to SOC302
dynamics in croplands under a varying climate.303
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Unlike SOC stock, crop yield appears to be less sensitive to the warming–drying304
stress, but it depends more on the soil fertility (in terms of SOC stock in the top305
20-cm soil layer) (see Table 7). In other words, crops grown on soils with higher soil306
fertility are less impacted by climate change within the projected weather variable307
regimes. The grain yields of maize, sorghum, and millet significantly depend on308
soil fertility and much less on climate variables. Note that the response of rice to309
precipitation could be wrong because it was assumed to have enough water from310
irrigation in our model simulations. In fact more rainfall can help reduce irrigation311
loading. Compared to other crops, rice production has the greatest potential increase312
in grain yield with an increase in N fertilization and is least influenced by the313
warming–drying stress (see Table 7 and Fig. 2). In contrast, a significant reduction314
in groundnut yield may result from an increment in both N fertilization rate and315
progressive warming–drying stress. Note that groundnut growth can be independent316
of N fertilizers because groundnut has an N-fixation capacity through symbiotic317
relations with rhizobia and does not need an extra N supply during its growing period318
(Murata et al. 2002).319

4 Conclusions320

(1) Soil organic carbon dynamics in the study area over the twenty-first century321
in response to climate change are more sensitive in natural ecosystems than in322
cropping systems.323

(2) In view of crop yields, soil fertility (usually SOC content is considered one of324
most important indicators) will be more critical than are climate variables.325

(3) The responses of crop yields to precipitation are much less sensitive than326
to temperature and N fertilization rates in the study area because the mean327
annual precipitation in the study area is high enough for existing crop species’328
production because the projected annual precipitation is still as high as 750 mm329
even under HCC.330

(4) A modest rate of fertilizer application (e.g., 30 kg N ha−1 year−1) could lead to331
sustainable and productive cropping systems. A limited source of N fertilizers332
can be first allocated for rice (assuming irrigation is possible), then for millet333
and sorghum.334

(5) Food security and agricultural sustainability in the savanna zone under poten-335
tially warming–drying climate will greatly rely on N fertilization rates.336
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