
1. Introduction
Understanding how changes in the boreal forest ecosystem will affect  
global climate requires knowledge of boreal carbon dynamics. There are 
two principal approaches to understand boreal carbon dynamics: modeling 
and measuring. However, there are large uncertainties in quantifying boreal 
carbon dynamics using process-based models. The uncertainties result from 
model structure imperfection, poorly defined parameters, and driving force 
errors. Direct measurements of carbon stocks and fluxes usually are sparse, 
poorly distributed or biased. Data assimilation can mitigate the limitations  
of both approaches by incorporating the direct measurements into the 
modeling process.

2. Objective
This study uses a Smoothed Ensemble Kalman Filter (SEnKF) to sequentially 
assimilate measurements that characterize carbon flux and stocks, climate and 
soil into the General Ensemble Biogeochemical Modeling System (GEMS) 
to improve estimation of forest carbon dynamics in a boreal ecosystem of 
interior Alaska.

3. Data, Model, and Fusion Scheme
Site:
The site, known as Randerson’s site, is located near Delta Junction 
(63o54’N,145o40’W) in Alaska and has a dominant cover of black spruce. 
Climate data, including air temperature, precipitation (both rain and snow 
components), radiation and vapor pressure deficit, were collected in the field 
and at the climate monitoring station in nearby Big Delta, Alaska from 2002 
to 2004 (WRCC, 2007). Soils consist of well-drained silty loams on top of 
glacial moraines.

Data:
Assimilated data. First we used a flux partition model (Yuan et al., 2007) and 
field measurements of climate, soil, energy, and Net Ecosystem Exchange 
(NEE) collected at Randerson’s site from 2002 to 2004 (Liu et al, 2008) to 
simulate Gross Primary Production (GPP) and Ecosystem Respiration (ER). 
Then we derived Net Primary Production (NPP), Autotrophic Respiration 
(AR), and Heterotrophic Respiration (HR) based on relationships between 
NPP and GPP (i.e., NPP = (0.525±0.05)*GPP, AR = (0.475±0.05)*GPP,  
HR = ER-AR). The relationships were calibrated from NPP (Mack et al., 
2008) and simulated GPP.

All assimilated data errors are assumed to have Gaussian distributions with 
a mean of zero and a variance of 5 percent of the average data based on 
uncertainty analysis in eddy covariance measurements.

Model:
GEMS is a complex monthly biogeochemical model system based on the 
Monte Carlo technique. It includes a number of submodels (e.g., plant 
production and soil organic matter (SOM)), which are driven by various 
forces (e.g., climate conditions, soil properties, and various management 
options) (Liu et al., 2003). The plant production submodel assumes that NPP 
equals the monthly potential plant production multiplied by scalars related 
to moisture, temperature, stand age, and seasonal change. The SOM includes 
three soil organic matter pools (active, slow, and passive) with different 
potential decomposition rates, above and belowground litter pools, and a 
surface microbial pool which is associated with decomposing surface litter.

Fusion Scheme:
SEnKF is a sequential data assimilation method that combines an ensemble 
Kalman filter and a kernel smoothing technique (Chen et al., 2008). The 
SEnKF method is capable of estimating simultaneously the model states  
and parameters by concatenating unknown parameters and state variables  
into a joint state vector, recursively assimilating data into the model and  
thus detecting the possible time variation of parameters, and properly 
addressing various sources of uncertainties stemming from input, output  
and parameter uncertainties.

4. Results and Analysis

5. Conclusion
 After using SEnKF to assimilate sequentially eddy covariance measurements 
into GEMS, the estimates of state variables, such as NEE, NPP, and HR (see 
fig. 2~4), are substantially improved over GEMS alone for the boreal forest 
site. Especially, predictions using updated parameters match observations 
better than model runs with fixed parameters (see fig.1) because SEnKF 
takes into account seasonal variations of the parameters. Through Monte 
Carlo analysis, NEE and NPP estimated by GEMS are quite sensitive to the 
perturbation of parameters (e.g., potential production rate) during summer. 
However, SEnKF can reduce the uncertainty of NEE and NPP by 50 percent 
stemming from the uncertainty of the parameter. The estimates of NEE from 
the SEnKF analysis suggest the forest site was a net sink for three years.
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Figure 1. Potential Plant Production Rate. SEnKF 
can catch seasonal variations of the key parameter 
of the plant production submodel in GEMS and 
gradually reduces the error of the parameter. 
Conventional inverse methods typically derive 
a constant value of the parameter. In the SEnKF 
procedure, we explored the effects of ensemble 
size and initial values of parameters, and found that 
a moderate ensemble size (e.g.,30) and an arbitrary 
initial guess of a parameter can soon converge.

Figure 3. Net Primary Production. Comparison 
of monthly variation of ensemble means (upper 
figure) and standard deviations (lower figure) 
of NPP. Both predictions of GEMS with updated 
parameters and estimates by SEnKF are better 
approximations to observations than those of 
GEMS with fixed parameters. The lower figure 
shows that NPP is quite sensitive to perturbation of 
the parameter (potential production rate) because 
standard deviations of NPP reach 25 percent of the 
mean during summer when the fixed parameter 
has a perturbation error of 10 percent of the 
parameter value. Using the updated parameter 
reduces 45 percent of the deviation and SEnKF 
reduces further up to 75 percent of the deviation.

Figure 4. Heterotrophic Respiration. Comparison 
of monthly variation of ensemble means (upper 
figure) and standard deviation (lower one) of 
HR. GEMS derived predictions that incorporated 
updated parameters are better approximations 
to observations than those that incoporated fixed 
parameters. Application of SEnKF prior to modeling 
produces the estimated values which are even 
closer to the observations. The lower figure shows 
that HR is not quite sensitive to perturbation of the 
parameter (potential production rate). However, 
Application of SEnKF significantly reduces 
ensemble variance.

Figure 2. Net Ecosystem Exchange Estimation. The 
upper figure shows monthly variations of ensemble 
means of NEE estimated by GEMS (one case with 
fixed parameters estimated by conventional inverse 
method and the other with updated parameters 
by SEnKF), SEnKF and observation, respectively. 
We see that predictions of GEMS with updated 
parameters are closer to observations than those 
of GEMS with fixed parameters. SEnKF further 
improves the predictions of GEMS with updated 
parameters. The lower figure shows that the 
standard deviation of NEE estimated by GEMS is 
up to 30 percent of the mean during summer when 
the fixed parameter is added with a perturbation 
error of 10 percent of the parameter value. Using 
the updated parameter reduces 40 percent of the 
deviation caused by the parameter uncertainty and 
SEnKF reduces further up to 70 percent of  
the deviation.
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