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a b s t r a c t

Upscaling the spatial and temporal changes in carbon (C) stocks and fluxes from sites to regions is a critical
and challenging step toward improving our understanding of the dynamics of C sources and sinks over
large areas. This study simulated soil organic C (SOC) dynamics within 0–100 cm depth of soils across the
state of Iowa in the USA from 1972 to 2007 using the General Ensemble biogeochemical Modeling System
(GEMS). The model outputs with variation coefficient were analyzed and assembled from simulation unit
to the state scale based upon major land use types at annual step. Results from this study indicate that
soils (within a depth of 0–100 cm) in Iowa had been a SOC source at a rate of 190 ± 380 kg C ha−1 yr−1.
This was likely caused by the installation of a massive drainage system which led to the release of SOC
and use change
oil organic carbon
ile drainage
estern Corn Belt

from deep soil layers previously protected under poor drainage conditions. The annual crop rotation
was another major force driving SOC variation and resulted in spatial variability of annual budgets in all
croplands. Annual rate of change of SOC stocks in all land types depended significantly on the baseline
SOC levels; soils with higher SOC levels tended to be C sources, and those with lower levels tended to
be C sinks. Management practices (e.g., conservation tillage and residue management practices) slowed
down the C emissions from Iowa soils, but could not reverse the general trend of net SOC loss in view of

ly to
the entire state due main

. Introduction

Due to the importance of agricultural land in terrestrial car-
on (C) accounting many studies on agricultural ecosystems since
he mid-1990s have focused on C dynamics and their associated
riving forces (Paustian et al., 1997; Lal, 2004). Carbon account-

ng at some long-term agricultural experimental sites suggests that
and use changes caused substantial soil organic C (SOC) loss from
orth American terrestrial ecosystems between the 1850s and the
950s; since the 1970s, improved farming practices (e.g., conser-
ation tillage and residue management, crop rotation, and elevated
ertilization rates) in many areas stabilized or increased SOC stock
Paustian et al., 1997; Roose et al., 2006). However, most such
tudies have some drawbacks: (1) sites were specific and under

xperimental control; (2) the studies were limited to the top soil
ayer (usually less than 30 cm in depth); and (3) the results from
hose studies were derived from either a static land use scenario or
and use change statistics with decadal time intervals. The magni-

∗ Corresponding author. Tel.: +1 605594 6903; fax: +1 605594 6529.
E-mail address: ztan@usgs.gov (Z. Tan).

167-8809/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.agee.2010.11.017
a high level of baseline SOC stocks.
© 2010 Elsevier B.V. All rights reserved.

tude and spatial variations of C sources or sinks in crop-dominated
ecosystems over large areas are still uncertain because of the diffi-
culty in quantifying the spatial variability of site conditions (such as
antecedent SOC stock and contemporary land use change) and the
diversity of land management. For the U.S. Corn Belt, few regional C
estimates are available. Brenner et al. (2001) reported that conven-
tional farming systems (including reduced tillage) in Iowa made
the soil a C sink of 80 kg C ha−1 in 1996. Evrendilek and Wali
(2004) reported that Ohio croplands (except for the corn-for-grain
cropland) acted as a C source of 56 kg C ha−1 in 1996, while the
continuous corn cropland turned out to be a C sink of 26 g C m−2 in
the same year. Those estimates depended highly on their specific
natural and management variables.

Land use and land cover change (LUCC) information is critical for
estimating regional C budget. Changes in cropland area, crop com-
position, fertilization rate, tillage, and other management practices
influence C fluxes over cropping systems (Kern and Johnson, 1993).

Unfortunately, many previous C modeling studies could not include
temporal land use change because of the limited availability of tem-
poral LUCC data. The General Ensemble biogeochemical Modeling
System (GEMS) is a new type of LUCC-oriented, regional level, bio-
geochemical simulation system designed for assimilating dynamic

dx.doi.org/10.1016/j.agee.2010.11.017
http://www.sciencedirect.com/science/journal/01678809
http://www.elsevier.com/locate/agee
mailto:ztan@usgs.gov
dx.doi.org/10.1016/j.agee.2010.11.017
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UCC data (Liu, 2009). GEMS can spatially simulate the impacts of
ynamic land use and climate, as well as the effects of management
ractices. GEMS can also estimate uncertainty through ensemble
imulations, which transfer uncertainties from inputs to outputs
nd capture the spatial and temporal variability of net primary pro-
uctivity (NPP) and crop yield. For agricultural ecosystems, GEMS
an generate crop rotations/combinations based upon agricultural
ensus data and produce various soil input data for biogeochemi-
al simulations. This model has been applied in diverse ecosystems
Liu et al., 2004a,b; Tan et al., 2005, 2006a, 2009a,b, 2010; Zhao
t al., 2010). GEMS can also function as a platform to encapsu-
ate other biogeochemical models (e.g., CENTURY, EDCM (Liu et al.,
003; Zhao et al., 2010)); additionally, it can drive and automati-
ally parameterize them with the same input data (with or without
inimum modifications) to the encapsulated models; this is use-

ul for reusing models that are difficult to modify (Liu, 2009; Zhao
t al., 2010).

To simulate the dynamics of SOC under nonequilibrium con-
itions, models with a multi-soil-layer structure are necessary
Sharpley and Williams, 1990). Because of soil erosion or deposi-
ion, characteristics of a soil profile and SOC stocks in all soil layers

ay change dynamically. If the thickness of the top layer is fixed,
ts SOC content must experience a dynamic replacement (Harden
t al., 1999; Liu et al., 2003). Therefore, soil decomposition pro-
esses must be changed as well due to the increase (under erosion)
r decrease (under deposition) of exposure of SOC in deep layers,
nd the biomass, growth, and death of plant roots must also change
ynamically (Liu et al., 2003).

The role of conventional tillage practices in SOC losses from
ropland and the potential to sequester atmospheric C into cropped
oils by adopting conservation tillage measures have been inten-
ively investigated and widely realized (West and Post, 2002;
al, 2004). Beside tillage disturbances, drainage condition (espe-
ially internal drainage) has been recognized as the second major
orce driving SOC dynamic in cropland (Baker et al., 2007). Gen-
rally, poorly drained environments favor SOC accumulation and
ell-drained environment enhance the soil organic matter decom-
osition and C emissions (Tan et al., 2004). Improvement of
rainage conditions through an internal tile drainage system within
oorly drained soils can promote crop root development and lead to
n increase in crop biomass (both above- and below-ground) and
ield (Kanwar et al., 1988). For instance, internal (tile) drainage
as reported to lead to yield increases of 630–2820 kg ha−1 for

orn and 100–400 kg ha−1 for soybean in Iowa (Wright and Sands,
001; Drury et al., 2009) even though tile drainage could also pro-
ote the NO3-N leaching (Randall et al., 1997) due to soil aeration

mprovement for microbial activities to increase N mineralization
Updegraff et al., 1995) and subsequent nitrification (Regina et al.,
996). However, there are no systematic observation data available
or demonstrating the effects of internal drainage system on SOC
ynamics over large areas yet, especially for illustrating the vertical
ariability through the soil body above the tile system.

In this study, we integrated existing research capabilities in
iogeochemical cycling, remote sensing, and ecosystem science to
espond to the need for information by policy makers and landown-
rs regarding how annual crop rotation, tillage practices, and soil
nternal drainage affect the SOC budgets within the 0–100 cm soils
n the Western Corn Belt of the United States.

. Materials and methods
.1. Study area

The study area, the state of Iowa, is located in the north-central
art of the United States and covers an area of 144,066 km2; it is
Environment 140 (2011) 106–112 107

a core part of the Western Corn Belt Plains Ecoregion (Omernik,
1987). Average annual precipitation varies from 710 mm in the
northeast to 965 mm in the southwest, and average annual min-
imum temperature is only 0.5 ◦C in the northeast and 6.1 ◦C in
the southwest, with monthly average temperatures ranging from
−14.3 to 30.1 ◦C. Soils in the central and northern regions have rela-
tively lower clay content, higher bulk density, and higher SOC stock
levels than other parts of the state. Cropland accounts for more than
85% of the state, and much of the remaining land is used for feed
grain to support livestock production. Major crops include corn,
soybean, alfalfa, and grain sorghum.

2.2. Modeling system—GEMS-EDCM

2.2.1. The encapsulated plot-scale model EDCM
The Erosion Deposition Carbon Model (EDCM) (Liu et al., 2003;

Zhao et al., 2010) was used in this study to quantify SOC stocks,
while GEMS (see Liu, 2009 for detail) was used as a platform to
encapsulate EDCM, drive the encapsulated model with the same
input data and automatically parameterize the EDCM according to
biophysical conditions of any land parcel, and deploy it across space
without considering the interactions among land pixels from plot
scale to regional scale (Liu et al., 2003).

EDCM, similar to CENTURY (Parton et al., 1987), is a process-
based biogeochemical model (Liu et al., 2003; Zhao et al., 2010)
and was developed to characterize the SOC dynamics in a soil pro-
file and to be capable of evaluating the impacts of soil erosion and
deposition. CENTURY has a one-topsoil-layer structure for simu-
lating C cycle, but EDCM adopts a multiple soil-layer structure to
account for the stratification of a soil profile and SOC stock in each
soil layer. EDCM dynamically tracks the evolution of the soil profile
and C storage as influenced by soil erosion and deposition. It was
selected in this study as the underlying ecosystem biogeochemical
model in GEMS to simulate C and N cycles.

EDCM, like the CENTURY, can simulate C and N cycles in diverse
ecosystems at a monthly time step and model the impacts of man-
agement practices including LUCC, fertilization, and cultivation
(e.g., Liu et al., 2003; Zhao et al., 2010). The major inputs for EDCM
include land cover and land use type, monthly average maximum
and minimum air temperature, monthly precipitation, soil texture,
initial SOC level, atmospheric N deposition, and various manage-
ment practices. The major output variables relevant to the proposed
project include NPP, grain yield, C decomposition, C exchange rates
between ecosystems and the atmosphere, biomass removal by har-
vesting, and C stocks in vegetation and soils.

Stochastic simulation ensembles have been used in GEMS to (1)
incorporate variances and covariance of input data and (2) trans-
fer input data uncertainty into model outputs. Through ensemble
simulations, the nonlinearity of the ecosystem models are ade-
quately addressed, and the uncertainty of the model outputs
quantified by performing 20 ensemble stochastic model simu-
lations were performed for each simulation unit to capture the
heterogeneity and uncertainty of the data that define the simu-
lation unit.

2.2.2. Computing and partitioning SOC pools in a soil profile for
modeling

The STATSGO soil database (USDA, 1994) was used in this study
to provide the initial soil information for GEMS (e.g., soil layer
depth, soil organic matter content, bulk density, soil texture frac-
tions). The STATSGO database for the state of Iowa contains 76 map

units where each map unit consists of numerical components. The
numbers of soil layers for a soil map unit may vary from 1 to 6 and
the depth of each layer ranges from 10 cm to 160 cm. EDCM model
can simulate up to 10 soil layers with an equal layer depth of either
10 cm or 20 cm. In this study, the values of soil variables from the
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atabase were recalculated at an equal interval of 20 cm based on
he depth weight of each soil layer.

Soil organic C stock is usually partitioned into three pools based
pon resistance to microbial degradation as defined in the CEN-
URY model (Parton et al., 1987, 1994): labile (or active), slow,
nd passive. Labile C pool has a short turnover time (less than 5
ears) and consists of rapidly decomposable SOC fractions. Pas-
ive C pool has a turnover time of several hundred years or even
onger, and consists of microbial-resistant components such as
umic substances (Nicolardot et al., 1994). The dynamics of each
OC pool and their fractions in the total SOC stock vary with soil
ype and horizon (depth). Generally, the passive SOC fraction is
bout 0.5 and the labile fraction is about 0.1 for the top layer.
EMS uses the following algorithms to partition the total SOC
tock into the three C fractions within a soil profile (see Liu et al.,
003):

Passive SOC pool = 0.86 − 0.69 ∗ Passive deep + (1.69

∗ Passive deep − 0.86) ∗ (1 − EXP(−0.05 ∗ Soil depth) (1)

ctive SOC pool = 0.06 ∗ EXP(−0.018 ∗ Soil depth) (2)

low SOC pool = 1 − passive–active (3)

here Passive deep is the passive SOC fraction in deep layers (can
e 0–1).

Soil depth in cm is the middle depth of each layer. For example,
t could be 10 cm for the top 20 cm layer of soil.

.2.3. Supporting data for automated model parameterization
Below are the essential geospatial datasets used in this study

nd most of them are required by GEMS:

1) Annual cropland grid maps from 2000 to 2007. They were
derived from the Cropland Data Layer (CDL) that were
generated by USDA National Agricultural Statistics Service
and downloaded from http://www.nass.usda.gov/research/
Cropland/SARS1a.htm.

2) Climatic variables grids covering the years from 1972 to 2007
(consisting of mean monthly precipitation and mean monthly
minimum and maximum temperatures). These grid layers
were derived from PRISM Group of Oregon State University
(http://www.prism.oregonstate.edu/).

3) Iowa STATSGO soil database (USDA, 1994). This soil map con-
sists of 2028 polygons that are associated with 76 STASGO map
units across the state of Iowa.

4) Nitrogen deposition map. This map spatially depicts the total
atmospheric N deposition from wet and dry sources. It was
gathered from the National Atmospheric Deposition Program
(http://nadp.sws.uiuc.edu/).

5) Drainage class grid layer. It was derived from the Compound
Topographical Index (CTI) map using an empirical approach
(see Eq. (4) in Section 2.2.4). The original CTI map was obtained
from the U.S. Geological Survey (USGS) Earth Resources Obser-
vation and Science (EROS).

6) Irrigation distribution map. It was extracted from the 2001 U.S.
national irrigation layer generated by USGS EROS.
GIS layer of the county codes (FIPS) of Iowa.
Other attribute data include the following:

1) Crop composition and crop rotation probabilities, which were
derived from the National Resources Inventory (NRI) database
(http://www.nrcs.usda.gov/technical/NRI/).
Environment 140 (2011) 106–112

(2) Forest Inventory and Analysis (FIA) data, including forest
species and age distribution, cutting or logging records, etc.
They were obtained from USDA Forest Service.

(3) Tillage practices and residue management statistics from 1989
to 2008. They were collected from the Conservation Technology
Information Center (2008).

All geospatial data layers were processed to be an identical pro-
jection and coordinate system, and then overlain to form one grid
layer with a common cell size of 2 km by 2 km (spatial resolution).
This grid layer is called the “Joint Frequency Distribution” (JFD)
layer and its attribute table is called the JFD table, which was used
in GEMS. There were 35,370 different JFD cases in this study, and
each JFD case was the simulation unit in GEMS.

2.2.4. Impact of tile drainage
It is critical to represent the dramatic change in drainage con-

ditions throughout Iowa. A massive tile drainage system was
developed in Iowa to convert native prairies and wetlands to highly
productive croplands. An empirical model was developed to define
drainage conditions at any depth in a soil profile and is described
as follows:

Drainage = drain0

∗ (1 − 1/(1 + EXP(−d0 ∗ (depth − tile depth + 40))))
(1 − 1/(1 + EXP(d0 ∗ (tile depth − 40))))

(4)

where Drainage is the drainage change coefficient ranging from 0 to
1 representing classes from poorly drained to well-drained; drain0
is the drainage at the top of the soil surface; d0 is the drainage
change coefficient or drainage curve flatness transitioning from
well-drained to poorly drained; tile depth is the burial depth of
tile drainage system, and depth is the middle point of each layer.
The unit for all depths is in cm.

Tile depth is an important parameter in the estimation of
drainage in a soil profile. Most tile drainage systems were buried
between 75 cm and 120 cm below the soil surface (Singh et al.,
2007). For the first run, we set tile depth = 100 cm, then investi-
gated the sensitivity of SOC stock to the tile depth (between 75 cm
and 120 cm).

Following Eq. (4), it can be seen that a smaller d0 value indicates
gradual and long-tail vertical distribution of drainage, and a larger
d0 value indicates a sudden change. The values greater than 0.2 do
not create any significant differences. So the value for d0 should be
from 0 to 0.2. With d0 = 0, the value of drainage does not change
vertically, and the EDCM returns to the original EDCM values. For
Eq. (4), we set d0 = 0.05, and drain0 = 1.0 which represents the well-
drained class in this study. The uncertainty of tile drainage on SOC
dynamics was quantified by EDCM based on the built-in algorithms
(see Liu et al., 2003).

2.2.5. Automation of model parameterization
Because most information in spatial databases is aggregated to

the map unit level, direct injection of such information into mod-
eling processes is often problematic and subject to potential biases
(Kimball et al., 1999; Reiners et al., 2002). Consequently, scaling
methods are usually needed to incorporate field-scale spatial het-
erogeneities of state and driving variables into the simulations. An
automated model parameterization system (AMPS) in GEMS gen-
erally consists of two major interdependent parts: (1) data search
and retrieval algorithms and (2) data processing mechanisms. The

first part searches and retrieves relevant information from various
databases according to the keys provided by the JFD table that was
associated with the JFD layer as defined in Section 2.2.3. The data
processing mechanisms downscale the aggregated information at
the map unit level to the field scale using a Monte Carlo approach.

http://www.nass.usda.gov/research/Cropland/SARS1a.htm
http://www.prism.oregonstate.edu/
http://nadp.sws.uiuc.edu/
http://www.nrcs.usda.gov/technical/NRI/
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Table 1
Areal percentages of major land use types in Iowa from 2000 through 2007.

Land use type 2000 2001 2002 2003 2004 2005 2006 2007 Mean

Water 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Wetlands 1.1 1.2 1.4 1.4 1.4 1.4 1.5 1.6 1.4
Urban/developed 4.2 3.7 4.9 3.8 4.5 4.5 4.0 6.1 4.5
Mixed forests 4.8 4.9 5.5 5.3 5.7 5.7 6.4 6.8 5.7
Shrub/scrub 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1
Grass 1.9 1.8 2.6 2.6 2.5 2.5 2.6 3.8 2.5
Agricultural land
Pasture/hay 5.1 6.0 7.6 7.2 7.7 7.7 9.0 11.3 7.7
Corn 33.2 32.7 32.4 33.6 31.7 31.7 33.7 35.0 33.0
Soybean 29.7 30.0 26.1 29.2 28.1 28.1 28.2 21.7 27.6
Other crop 10.7 9.9 11.4 9.0 11.8 11.8 8.7 12.1 10.7
Forage (alfalfa) 2.6 2.6 2.2 3.0 1.7 1.7 2.2 0.4 2.1
Fallow/idle crop 5.9 6.2 4.8 4.1 3.9 3.9 2.6 0.0 3.9
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otal land surface area of Iowa is about 145,720 km2. Data source: Cropland Da
ttp://www.nass.usda.gov/research/Cropland/SARS1a.htm.

. Results

.1. Annual changes in land use

Historically, Iowa has been dominated by cropping systems
here about 85% of all land area are cropped. Our analyses of

he NASS Cropland Data Layers (CDL) from 2000 to 2007 show
ome change in the proportion of dominant crop types, fallow, and
rassland (Table 1). Grassland area increased from 1.9% to 3.8%,
nd mixed forestlands increased from 4.8% to 6.8%, but the total
ropland area declined from 87.1% to 80.5%, despite some interan-
ual variation. The decrease in the total cropland area was mainly
ttributed to the reduction in the areas of soybeans (by 8%) and
allow (by ∼6%), even though there was an increase in corn (1.8%).
ounty-level statistics from the Conservation Technology Informa-
ion Center (CTIC, 2008) indicate that the loss of cropland could be
ttributed to increased participation in the Conservation Reserve
rogram (CRP) (whose total area increased from 709,500 ha in 2000
o 918,036 ha in 2006), resulting in a corresponding increase in
rassland area during this period, but the fallow area shrank from
.9% to 2.6% between 2000 and 2006, and almost disappeared in
007.
.2. Annual biomass production and harvest

The data presented in Fig. 1 show that the average grain yield
rom 1972 to 2007 increased by 108%; specifically, the corn yield
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y harvest in Iowa.
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yers provided by USDA National Agricultural Statistics Service and available at

increased 138% while the soybean yield increased 36%. In the mean-
time, the biomass removed by harvesting from croplands increased
65%, which might be a main contributor to the deficit of net C flux
in cropping systems. The continuous increment in both crop yield
and total biomass over time could also be attributed to the improve-
ment of soil drainage conditions, improved crop species, elevated
fertilization rate, and weed and pest control. These profitability-
oriented management measures could, to a great extent, offset
the adverse impacts caused by natural disturbances such as flood-
ing and drought. That may be why no explicit correlation could
be found between crop yields and weather variables in general.
However, historical low yields are found to associate with the
years having either an extreme high annual precipitation (e.g.,
1993) or an extreme low one (e.g., 1994, 1997, 2005, as shown in
Fig. 1).

3.3. Historical SOC stocks and their vertical distribution

Fig. 2 indicates that the total SOC within the 0–100 cm soil pro-
file decreased from 185.3 Mg C ha−1 in 1972 to 168.8 Mg C ha−1

in 2007 (about 10%). This decrease was principally attributed to
the reduction within the upper 60 cm of soil. The reduction rate
of SOC stock prior to the mid-1980s was greater than that after
the mid-1980s, especially the SOC loss from the top 20 cm of soil
at an annual reduction rate of 0.453% (±0.168%). Since the mid-
1980s, the SOC reduction rate from the topsoil has become smaller

and tended to stabilize until 2007, with an annual reduction rate
of 0.092% (±0.136%). However, the SOC stocks beneath the 20 cm
depth showed a continuous decline by 13.4%, 10.9%, 3.0%, and 1.4%
for each 20 cm level of soil depth, respectively, until the end of 2007.
The annual reduction rate of the SOC stock within the 0–100 cm
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Fig. 2. Historical spectrum of SOC stocks within each 20 cm depth averaged for all
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http://www.nass.usda.gov/research/Cropland/SARS1a.htm
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oil depth was 0.93% (±0.62%) between 1972 and 1985 and 0.33%
±0.27%) between 1985 and 2007.
.4. Annual SOC budgets and spatial distribution

Counting the biomass removed by harvesting, all cropping sys-
ems were a C sink with increasing strength over time (Fig. 3) due

ainly to the increase in above-biomass production (see Fig. 1). In

ig. 4. Comparison of spatial distribution of simulated SOC stocks within the top 0–20 cm
972 and 2007.
Environment 140 (2011) 106–112

the meantime, the SOC stock declined even though the SOC source
strength tended to weaken from 1972 to 2007.

As illustrated in Fig. 4, the spatial patterns of SOC stock var-
ied over time, and the balance as of 2007 (especially for the top
20 cm layer) appeared to be closely related to the SOC levels in
1972. The soils with higher initial SOC stocks tended to lose more
SOC. After about the mid-1980s, there were no significant changes
in SOC stocks (see Fig. 2).

Similarly, the spatial patterns of SOC budgets within either the
top 20 cm or 100 cm depth depended heavily on the SOC magni-
tudes in 1972 regardless of the effects of improved drainage and
cropping systems.

4. Discussion

4.1. Uncertainty control of ensemble simulations and validation

Uncertainties are manifested at the simulation unit (JFD) level
in this study because all the ensemble simulations are performed at
this level in GEMS. Input uncertainty (both initialization and driv-
ing forces) and model uncertainty (i.e., stochastic simulations) are

also transferred to outputs at the JFD level. GEMS simulations for
each JFD case were executed to incorporate the variability of inputs.
Values for the selected output variables were written to a set of
output files after each model execution and then aggregated for
the study area using the SAS Macros program (SAS Institute Inc.,

of soil (left) and 0–100 cm profile (right) across Iowa, and their differences between
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985 (red line) and 1985 to 2007 (blue line).

004). Meanwhile, the uncertainty of the simulations was evalu-
ted in terms of the coefficient of variation (CV) with all model
utputs.

The estimation of NPP needs to set up a maximum poten-
ial NPP parameter for each land cover and land use type. We
sed grain yields of major crops from USDA county statistics
nd field-observed biomass data from literature as references to
erify corresponding outputs, and repeatedly ran simulations by
djusting parameters after each run until the outputs matched the
eferences as closely as possible. Our validation analysis indicates
hat about 90% of variance in model outputs can be explained,
nsuring our confidence in simulation results.

.2. Historical trends and temporal variability

As illustrated in Fig. 2, prior to the mid-1980s, the SOC stock
especially in the top 20 cm depth) showed a rapid decline; after-
ard, the trend became gentle and leveled off until 2007. This

rend could be attributed to the following facts. First, as indicated
y the CTIC statistics, prior to the mid-1980s, the tillage methods
ere dominated by conventional tillage, and then by conserva-

ional tillage (such as no-till); and reduced-tillage expanded over
ime. Second, an extension of the internal tile drainage system
nstallation not only facilitated dissolved organic C draining out
rom the soil body, but also enhanced the decomposition of soil
rganic matter from the soil layers above the tile system due to
he improved soil aeration (for microbial activities). While vari-
us tillage practices have little effect on soil C budgets in the soils
eeper than 40 cm even a significant difference could be made to
he top soil layer (Blanco-Canqui and Lal, 2008; Poirier et al., 2009).
owever, the internal drainage-induced SOC loss could be offset

o some extent by increased biomass input due to new crop vari-
ties, elevated fertilization rate, and improved internal drainage
onditions (Kanwar et al., 1988; Wright and Sands, 2001; Drury
t al., 2009). Third, there were the effects of antecedent SOC levels
hat soils with higher C contents tended to lose more C following
and surface disturbances (Tan et al., 2006a,b) and climate warm-
ng (Lark et al., 2006). In other words, the loss rate becomes smaller

ith a decrease in the antecedent SOC level. In fact, the change in
OC stock could vary either increasingly or decreasingly. Fig. 5 illus-
rates that the magnitude and direction of the annual SOC change
epended significantly upon the levels of antecedent SOC stocks.

learly, the annual SOC stock change (or decline) rate was much
reater in the period from 1972 to 1985 (0.93%) than in the period
rom 1985 to 2007 (0.33%). Because (1) the baseline SOC stocks
ere greater in the former period than in the latter period due to

ontinuous SOC losses and (2) more intensive implementation of
Environment 140 (2011) 106–112 111

conservation tillage and residue management was in the former
period than in the latter period. The average change rate between
1972 and 2007 was about −190 ± 0.38 kg C ha−1 yr−1. The annual
change rate during the period from 1972 to 2007 was identified as
a function of the baseline SOC stock:

y = −0.0096x + 0.4122, R2 = 0.5443 (5)

where y is the annual change rate of SOC stock (Mg C ha−1 yr−1) and
x refers to the baseline SOC stock (Mg C ha−1) in 1972.

Generally the soils with higher C stocks (>50 Mg C ha−1) tended
to lose more SOC.

4.3. Spatial variability and changes in SOC stock

Fig. 4 demonstrates the spatially explicit association of the mag-
nitude of SOC stock change with the antecedent SOC magnitudes.
Soils with higher antecedent C contents show greater losses while
soils with lower antecedent SOC contents demonstrate smaller
losses during the conventional tillage-dominated period. Such gen-
eral relationships for two different periods were illustrated in Fig. 5.
The relationships between the change rate and baseline SOC con-
tents have been reported for other regions (Bellamy et al., 2005;
Tan et al., 2006a, 2007). By integrating dynamic change information
of land use and land management practices (e.g., no-till, reduced-
tillage, and conventional tillage) and historical records of climate
variables during the period from 1970 to 2000 into a biogeochemi-
cal model (i.e., GEMS) for the northwest Great Plains of the USA, Tan
et al. (2007) concluded that the SOC loss from cultivated croplands
with high SOC contents is unavoidable even though conservation
management practices could, to some extent, slow down C emis-
sion from such soils. This conclusion is similar to that made by Tan
et al. (2006a) which used meta-analysis and empirical modeling
for the east central USA (including the Eastern Corn Belt) where
tillage management was proven to play a critical role in SOC stock
budget in croplands. The conversion from conventional tillage to
no-till could reduce SOC emission by 16.8% across the Eastern Corn
Belt. Bellamy et al. (2005) analyzed the data from the National Soil
Inventory of England and Wales obtained between 1978 and 2003.
They reported that mean annual loss rates of SOC from soils across
England and Wales over the survey period ranged from 0.6% to 2.0%
and found that the relative rate of SOC reduction increased lin-
early with antecedent SOC content levels. They also believed that
SOC reduction over time and its relationship to antecedent SOC
level was attributed to climate change and had no relationship to
land use type. However, the soil C loss they observed in England
and Wales could not be totally attributed to climate change (Smith
et al., 2007). Our results show that although annual SOC changes in
Iowa had a declining trend over the period from 1972 to 2007, the
change rate varied with land use type and also varied temporally
in cropland; those changes matched with the implementation of
conservation tillage history.

5. Summary

The improvement of drainage conditions over croplands
enhanced SOC emissions from soils above the internal drainage
system owning to high baseline SOC contents even though con-
servation tillage and residue management implementation could,
to some extent, mitigate such an emission rate. Consequently, Iowa
soils had been a C source until 2007.

Annual change in cropping systems, such as crop rotation, was

another major force driving C fluxes and resulted in spatial vari-
ability of annual SOC budgets in all croplands.

Annual change rate in SOC stock in all kinds of land depended
significantly on the antecedent SOC levels, and soils with higher C
contents tended to be C sources, while soils having lower C contents
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ecame C sinks; this should be a critical consideration for managers
nd policy-makers when setting up C sequestration and C trading
rograms.
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